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Abstract— The aim of this article is to present the potential
of Kernel Principal Component Analysis (Kernel PCA) in
the field of vision based robot localization. Using Kernel
PCA we can extract features from the visual scene of a
mobile robot. The analysis is applied only to local features
so as to guarantee better computational performance as
well as translation invariance. Compared with the classical
Principal Component Analysis (PCA), Kernel PCA results
show superiority in localization and robustness in presence
of noisy scenes. The key success of the kernel PCA is the use
of fractional power polynomial kernels.

I. I NTRODUCTION

The problem of robot localization can be classified as
either global or local localization [10]. In global localiza-
tion, the robot tries to discover its position without previous
knowledge about its location. In local localization, the
robot must update its position using its current data from
its sensors as well as the previous information that it has
already accumulated. The lack of any historical information
about its surroundings makes the global localization more
challenging [7].

The idea of feature based robot localization involves
representing the robot environment as a topological map
by means of a large set of features. The main properties of
these features are: (1) They should be a compressed form
of the original scenes so as to speed up the computation of
the comparisons, still, they should maintain distinguishing
representations of the scenes. (2) They should exhibit
invariance against different transformations on the scenes
such as translation and scale. (3) They should also exhibit
robustness against noise or illumination changes, which the
robot encounters during its navigation.

PCA has been applied in the field of robot localization.
In [5] active vision is combined with robot localization
using PCA. In [1] and [13] the study of the problem of
batch learning and the use of incremental PCA is presented.
Their idea is to deal with on-line leaning of the robot
landmarks without recomputing the PCA for the whole
samples each time. The work done in [4] presents the
effect of illumination on PCA. They present illumina-
tion invariant features by filtering the eigenimages rather
than filtering the original samples. In [12] a comparison
among different vision-based robot localization approaches
is made. Their results show that PCA is more robust and
accurate than other methods such as edge density based,
but also show that PCA requires more computation power.

Robot localization using PCA can be classified as either
local and global based on the feature extraction applied.
In the global based approach [8], the whole image is
considered as a sample and applied to the PCA as a vector.
An example of global features is the work done in [3],
where PCA is globally applied to panoramic images, they
introduce robust PCA using an expectation maximization
approach where outliers can be resolved. On the other hand,
in the local based approach, a set of landmarks (small
patches) are first selected from the image and transformed
into vectors to be further handled by PCA [11].

PCA based methods have demonstrated their success in
the field of robot localization as well as in face recognition,
data compression, and many other applications. However,
PCA is an appropriate model for data generated by a
Gaussian distribution, or data best described by a second
order correlation. It is well known, however, that the dis-
tribution of natural images is highly non-gaussian. Kernel
PCA, originally proposed by Schölkopf et. al. [9], was
investigated as a generalization of PCA. While PCA aims
to find a second order correlation of patterns, KPCA pro-
vides a replacement which takes into account higher order
correlations. The success of KPCA is demonstrated in the
area of image processing, such as face recognition, image
de-noising, texture classification and other applications in
other different fields.

Another well known approach which has proved success-
ful on classification problems is the Linear Discrimination
analysis (LDA). This method fails for nonlinear problems
and therefor was extended to a kernel based approaches in
[Baudat] which is called GDA.

The remaining sections of this paper are organized as
follows: Section (II) reviews the KPCA and GDA approach
for feature extraction and classification and also presents
some commonly used kernels. Section (III) deals with the
methodology of finding the landmarks in the images where
features are to be extracted. In section (IV) we focus on the
robot training phase. In section (V) we explain the process
of localization after the robot is being trained. Section (VI)
presents the test model used to measure the success of our
localization experiments. In section (VII) we discuss the
experimental results of our approach.



II. N OTATION

Kernel PCA can be derived using the known fact that
PCA can be carried out on the dot product matrix instead of
the covariance matrix [9][14]. Let

{
xi ∈ RM

}N

i=1
denotes

a set of data. Kernel PCA first maps the data into some
feature spaceF by a functionΦ : RM → F , and then
performs standard PCA on the mapped data. Defining the
data matrixX by X = [Φ (x1)Φ (x2) · · ·Φ (xN )], the
covariance matrixC in F becomes:

C =
1
N

N∑
1

Φ(xi) Φ (xi)
T ≡ 1

N
XXT (1)

We assume that the mapped data are centered:
1
N

∑N
1 Φ(xi) = 0. We can find the eigenvalues and

eigenvectors ofC via solving the eigenvalue problem:

λu = Ku (2)

The N ×N matrix K is the dot product matrix defined
by K = 1

N XT X where:

Kij =
1
N

Φ(xi) • Φ(xj) =
1
N

k(xi, xj) (3)

Let λ ≥ · · · ≥ λp be the nonzero eigenvalues
of K (P ≤ N, P ≤ M) and u1, ..., uP the correspond-
ing eigenvectors. ThenC has the same eigenvalues and
there is a one-to-one correspondence between the nonzero
eigenvectors

{
uh

}
of K and the nonzero eigenvectors{

vh
}

of C : vh = αhXuh where αh is a constant for
normalization. If both of the eigenvectors have unit length,
αh = 1/

√
λhN . We assume

∥∥uh
∥∥ = 1/

√
λhN so that

αh = 1.
For a test datax, its h-th principal componentyh can

be computed using kernel functions as:

yh = vh • Φ(x) =
N∑

i=1

uh
i k (xi, x) (4)

Then theΦ image of x can be reconstructed from its
projections onto the firstH (≤ P ) principal components
in F by using a projection operatorPH

PHΦ(x) =
H∑

h=1

yhvh (5)

Commonly used kernels include:

• Gaussian Kernel:k (x, y) = exp
(
−‖x−y‖

2σ2

)
,

• Sigmoid Kernel:k (x, y) = tanh (κ (xi, y) + Θ),
• Polynomial Kernel:k (x, y) = (x, y)d.
The polynomial kernel has three famous degrees:(d =

1) is the linear classical PCA,(d > 1) the polynomial
kernel taking into account integer values, and(0 < d < 1)
is the fractional power polynomial presented in [6]. In the
following sections we concentrate mainly on the polyno-
mial kernel. Results from some preliminary experiments
that we made show that the polynomial kernel not only
demands relatively low computation time, but also leads to
better localization rate than the other kernels.

III. L ANDMARK SELECTION

Our approach of robot localization is done using visual
features. The features are extracted from the image using
a model of visual attention like that used in [11]. We
also adopt local features (landmarks) instead of global
features for two reasons: (1) To reduce the computational
time of the feature extraction done by Kernel PCA. (2) To
benefit from the translation invariance nature of the local
landmarks. We propose a two-phase approach: training
phase and localization phase. Figure (1) shows the system
components illustrating the different stages of each phase.
In the training phase we assume that the robot would
initially collect sufficient landmarks to represent the robot
environment. It is important to understand that Kernel PCA
employs batch learning in nature, this means it can not be
applied until all the samples are ready.

In the localization phase the robot should compare the
features of the actual scene with the stored features. The
result of such a comparison would lead to the knowledge
of the robot position.

The system components are discussed in details in the
following subsections.
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Fig. 1. System Components

IV. T RAINING PHASE

A. Landmark detection

Landmarks are parts of the image which hold sufficient
information about the image. Usually a small set of land-
marks per image is needed. A model of visual attention is
responsible for tracking a given landmark during the robot
navigation. We adopt a model based on edge density [11].
Let E ∈ R2 → R2 be the output of an edge detector on the
imageI. The edge densityD is the sum ofE over a region
of size Ω in the neighborhood of each elementx ∈ R2:
a candidate landmarkS is defined as a set of sufficiently
interesting local maxima ofD. Figure (2) shows a sample
image, its corresponding edge density is in figure (3).

D (x) =
1
‖Ω‖

∑
xi∈Ω

E (xi) (6)



Fig. 2. Sample Image showing positions of Landmarks

Fig. 3. Edge density showing positions of landmarks in squares

B. Feature extraction

Features are extracted from each landmark using Kernel
PCA as explained in section (??). Before features are being
extracted, the landmarks are vectorized. These landmarks
currently hold values from the gray level image component
only. The resulting features are temporary and should be
examined by the next stages.

C. Redundancy removal

It is possible that landmarks found in different images
are similar. This similarity can be discovered through the
corresponding feature similarity. The redundancy should be
eliminated in order to have a normalized relation between
landmarks and images. This means that only different
features are stored at the end. Consider a set of landmarks
S1...SN are collected during the robot training phase. These
were detected using the landmark detection approach in
subsection (IV-A). LetF1...FN ∈ ∆ be the corresponding
features extracted through Kernel PCA. The decision of
adding a new featureFa to the training set∆ is based on
the criteria‖Fi − Fa‖ > τ,∀Fi ∈ ∆ whereτ is a given
threshold.

D. Feature labeling

Labels are introduced as relations between Landmarks
to images. It is important to consider the two different
relations seen in figure (4). Each image holds a set of
landmarks and consequently a related set of labels. Similar
landmarks are represented as common labels (shared by
two or more images). The relation between labels and
features is1 : 1 because we hold only unique features
as explained in subsection (IV-C).
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Fig. 4. Relation between features, labels and images

E. Generalization

One important aspect in the robot localization work is
to have generalized and robust features. Robust features
can represent the corresponding positions under various
changes, mainly caused by variations of illumination or
noise. One way to accomplish this is to apply noise to
the training samples before labeling takes place. The noise
is applied to the each landmarkSi using additive noise:
Si = Si + gσ, i.e. sums an random value to the image
value at each pixel whereσ is the variance of the gaussian
noise being added.

It is worth comparing the labeling behavior of the Kernel
PCA and PCA with the presence of such additive noise.
Figures (5) and (6) illustrate the attempt of mapping the
features to their corresponding images. These features are
extracted from noisy landmarks. In figure (5) we use Kernel
PCA and perform the labeling. It is clear to see that Kernel
PCA has successfully labeled the images with the features
linearly, where the first 15 features are mapped to the image
1 and the second 15 features are mapped to the image 2 and
so on. On the other hand, figure (6) shows the results of
using PCA. The relation between the images and features
is not clear because the noise has affected the mapping.
The linear operation between features and images can be
accomplished in the case of PCA only in the absence of
noise.

V. L OCALIZATION PHASE

In the localization phase, seen in figure (1), the robot
acquires new (unseen) images and tries to find out its
position. The landmarks of the new images are detected
using the landmark detection approach in (IV-A). Then,
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Fig. 5. Kernel PCA labeling, using noisy landmarks
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Fig. 6. PCA labeling, using noisy landmarks

features are extracted from these landmarks as explained
in (IV-B). Each new feature is compared with each feature
stored in the database. The resulting comparison leads to:
(1) Identification of minimum difference between the new
features and the original ones. (2) Identification of the
corresponding labels of the new features. The most similar
image to the new image is found as the one which has
the largest weighted sum of the label values taking into
account that the labels are now being weighted according
to feature difference. The difference between a new feature
from the localization phaseFi and a labeled featureFj is
expressed by:

d(Fi, Fj) = 1− e−ε‖Fi−Fj‖ (7)

where the difference is normalized between[0, 1].

VI. CLASSIFIER TEST MODEL

A test model is needed in order to judge correct local-
ization experiments from incorrect ones. The model should
tell us if the robot in the right position as it claims to say us-
ing our localization approach or not. We use the minimum
topological distance between the robot claimed location
and the position of the current test image as our test
model. In other words, a successful localization is when
the robot given the imageU positioned at(xu, yu, θu) tells
its location as if it is seeing the imageV positioned at
(xv, yv, θv) and the difference:

c1(xu − xv)2 + c2(yu − yv)2 + c3(θu − θv)2 (8)

is kept minimum for all positions in the train set,
where c1, c2 and c3 are adjusted according to human
perception taking into account thatc3 À c1, c2. This model
approximates the reality where two images would look
different from each other if they are physically far from
one another. This model is subjected to failures in case of
highly similar environments, like two rooms which look
alike but are separated by a long corridor.

A localization success rate can be finally defined as

R =
Number of correctly localized scenes

Total number of scienes
(9)

VII. E XPERIMENTAL RESULTS

We constructed a database of features that represent
200 different distributed positions. Each position has 15
candidate landmarks, taken from gray scale images. Each
landmark is 15 × 15 pixels. For Kernel PCA [2], we
investigated the approach using different degrees of the
polynomial kernel and different number of eigenvalues. To
test the ability of localization, we used another set con-
taining 500 images located in the area around the trained
landmarks. The images exhibit different transformations
compared with the training images such as translation,
scale, or rotation.

We also studied the performance of the approach in
presence of noisy images. As noise generation is done
randomly, the experiments were done many times and the
average localization rate was finally calculated.

The results in figure (7) show the average localization
rate of the test images based on equations (7) and criteria
(8). It is clear that using a polynomial kernel of frac-
tional degree leads generally to better results than using
either PCA or an integer polynomial degree. The best
performance is obtained when the degree is 0.8 where the
localization rate reaches 86%.

Figure (8) is a comparison between PCA and kernel PCA
with a polynomial kernel of degree 0.8. We use different
number of eigenvalues and calculated the average of the
localization for each given eigenvalue. We only illustrate
the part of study where the number of eigenvalues is
between 5 and 15. Higher eigenvalues not only lead to
lower localization rate but are also undesired because of
the increasing size of the feature vector and because of
their embracement of noise. Feature vectors of less than 5
values can hardly contain sufficient information. The figure
shows that kernel PCA leads to better performance than
PCA in each case.

Finally, figure (9) demonstrates the capability of our
approach to retrieve similar images to the image in the
query. Color does not play any role in our approach, we
use only gray scale images. The query images are in the
first column at the left hand side, and the resulting images
are sorted from left to right in accordance to the degree of
similarity as in equation (7).



Original Image Retrieved Image Three successive candidates from a set of 500 images
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Fig. 9. In each line, the first image on the left is a query image, the second is the retrieved image, the three successive candidates are after it and
the feature differences are below each image
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VIII. C ONCLUSION

In this study we propose the application of Kernel PCA
to robot localization. We used test images of different
transformations of the train images as well as involvement
of noise. The work is applied to local landmarks so as
to benefit from their invariance to robot localization. Our
experiments show that Kernel PCA is very promising in
this field. When compared with classical PCA, Kernel
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Fig. 8. Average localization rate of PCA and Kernel PCA using different
eigenvalues

PCA has a higher localization rate. This was archived
by using a polynomial kernel of degree 0.8 and only
5 eigenvectors. The results are based on a test model
which takes positions of the images into consideration. This
model has shown some moderate failures where our system
correctly localizes the images but the test model mis-judges
these localizations.

It is worth mentioning that the PCA is faster than the



Kernel PCA. Using a set of 3000 features and 5 eigenvalues
show that the elapsed time factor is 1:5.
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